
Chapter # Chapter # 1212
Compiler Compiler Code Code
OptimizationsOptimizations

Dr. Dr. ShaukatShaukat AliAli
Department of Computer ScienceDepartment of Computer Science

University of PeshawarUniversity of Peshawar

Compiler Code OptimizationsCompiler Code Optimizations

 IntroductionIntroduction
•• Optimized code Optimized code

 Executes faster Executes faster
 efficient memory usageefficient memory usage
 yielding better performance.yielding better performance.yielding better performance.yielding better performance.

•• Compilers can be designed to provide code Compilers can be designed to provide code
optimization.optimization.

•• Users should only focus on optimizations not Users should only focus on optimizations not
provided by the compiler such as choosing a provided by the compiler such as choosing a
faster and/or less memory intensive algorithm.faster and/or less memory intensive algorithm.

Compiler Code OptimizationsCompiler Code Optimizations

 A Code optimizer sits between the A Code optimizer sits between the
front end and the code generator.front end and the code generator.
•• Works with intermediate code.Works with intermediate code.
•• Can do control flow analysis.Can do control flow analysis.•• Can do control flow analysis.Can do control flow analysis.
•• Can do data flow analysis.Can do data flow analysis.
•• Does transformations to improve the Does transformations to improve the

intermediate code. intermediate code.

Compiler Code OptimizationsCompiler Code Optimizations

 Optimizations provided by a compiler Optimizations provided by a compiler
includes:includes:
•• Inlining small functions Inlining small functions
•• Code hoisting Code hoisting
•• Dead store eliminationDead store elimination
•• Eliminating common subEliminating common sub--expressions expressions
•• Loop unrollingLoop unrolling
•• Loop optimizations: Code motion, Induction Loop optimizations: Code motion, Induction

variable elimination, and Reduction in variable elimination, and Reduction in
strength.strength.

Compiler Code OptimizationsCompiler Code Optimizations

 Inlining small functionsInlining small functions
•• Repeatedly inserting the function code Repeatedly inserting the function code

instead of calling it, saves the calling instead of calling it, saves the calling
overhead and enable further overhead and enable further overhead and enable further overhead and enable further
optimizations. optimizations.

•• Inlining large functions will make the Inlining large functions will make the
executable too large.executable too large.

Compiler Code OptimizationsCompiler Code Optimizations

 Code hoistingCode hoisting
•• Moving computations outside loopsMoving computations outside loops
•• Saves computing timeSaves computing time

Compiler Code OptimizationsCompiler Code Optimizations

 Code hoistingCode hoisting
•• In the following example (2.0 * PI) is an In the following example (2.0 * PI) is an

invariant expression there is no reason to invariant expression there is no reason to
recompute it 100 times.recompute it 100 times.
DO I = 1, 100DO I = 1, 100

ARRAY(I) = 2.0 * PI * IARRAY(I) = 2.0 * PI * IARRAY(I) = 2.0 * PI * IARRAY(I) = 2.0 * PI * I
ENDDOENDDO

•• By introducing a temporary variable 't' it can By introducing a temporary variable 't' it can
be transformed to:be transformed to:
t = 2.0 * PIt = 2.0 * PI
DO I = 1, 100DO I = 1, 100

ARRAY(I) = t * IARRAY(I) = t * I
END DOEND DO

Compiler Code OptimizationsCompiler Code Optimizations

 Dead store elimination Dead store elimination
•• If the compiler detects variables that If the compiler detects variables that

are never used, it may safely ignore are never used, it may safely ignore
many of the operations that compute many of the operations that compute many of the operations that compute many of the operations that compute
their values.their values.

Compiler Code OptimizationsCompiler Code Optimizations

 Eliminating common subEliminating common sub--expressionsexpressions
•• Optimization compilers are able to perform Optimization compilers are able to perform

quite well:quite well:
X = A * LOG(Y) + (LOG(Y) ** 2)X = A * LOG(Y) + (LOG(Y) ** 2)

•• Introduce an explicit temporary variable t:Introduce an explicit temporary variable t:•• Introduce an explicit temporary variable t:Introduce an explicit temporary variable t:
t = LOG(Y) t = LOG(Y)
X = A * t + (t ** 2)X = A * t + (t ** 2)

•• Saves one 'heavy' function call, by an Saves one 'heavy' function call, by an
elimination of the common subelimination of the common sub--expression expression
LOG(Y), the exponentiation now is:LOG(Y), the exponentiation now is:

X = (A + t) * t X = (A + t) * t

Compiler Code OptimizationsCompiler Code Optimizations

 Loop unrollingLoop unrolling
•• The loop exit checks cost CPU time.The loop exit checks cost CPU time.
•• Loop unrolling tries to get rid of the Loop unrolling tries to get rid of the

checks completely or to reduce the checks completely or to reduce the
number of checks.number of checks.number of checks.number of checks.

•• If you know a loop is only performed a If you know a loop is only performed a
certain number of times, or if you know certain number of times, or if you know
the number of times it will be repeated the number of times it will be repeated
is a multiple of a constant you can is a multiple of a constant you can
unroll this loop.unroll this loop.

Compiler Code OptimizationsCompiler Code Optimizations

 Loop unrollingLoop unrolling
•• Example:Example:

// old loop // old loop
for(int i=0; i<3; i++) {for(int i=0; i<3; i++) {

color_map[n+i] = i;color_map[n+i] = i;
}}}}
// unrolled version// unrolled version
int i = 0;int i = 0;
colormap[n+i] = i;colormap[n+i] = i;
i++;i++;
colormap[n+i] = i;colormap[n+i] = i;
i++;i++;
colormap[n+i] = i; colormap[n+i] = i;

Compiler Code OptimizationsCompiler Code Optimizations

 Code Motion Code Motion
•• Any code inside a loop that always computes the same Any code inside a loop that always computes the same

value can be moved before the loop.value can be moved before the loop.
•• Example:Example:

while (i <= limitwhile (i <= limit--22))
do {loop code}do {loop code}do {loop code}do {loop code}

where the loop code doesn't change the limit variable. where the loop code doesn't change the limit variable.
The subtraction, limitThe subtraction, limit--22, will be inside the loop. Code , will be inside the loop. Code
motion would substitute: motion would substitute:

t = limitt = limit--22;;
while (i <= t)while (i <= t)
do {loop code}do {loop code}

Compiler Code OptimizationsCompiler Code Optimizations

 ConclusionConclusion
•• Compilers can provide some code Compilers can provide some code

optimization.optimization.
•• Programmers do have to worry about Programmers do have to worry about •• Programmers do have to worry about Programmers do have to worry about

such optimizations.such optimizations.
•• Program definition must be preserved.Program definition must be preserved.

 End of Chapter # 12End of Chapter # 12

